skip to main content


Search for: All records

Creators/Authors contains: "Maghami, Iman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. null (Ed.)
  4. Abstract

    Surface meteorological analyses are an essential input (termed “forcing”) for hydrologic modeling. This study investigated the sensitivity of different hydrologic model configurations to temporal variations of seven forcing variables (precipitation rate, air temperature, longwave radiation, specific humidity, shortwave radiation, wind speed, and air pressure). Specifically, the effects of temporally aggregating hourly forcings to hourly daily average forcings were examined. The analysis was based on 14 hydrological outputs from the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model for the 671 Catchment Attributes and Meteorology for Large-Sample Studies (CAMELS) basins across the contiguous United States (CONUS). Results demonstrated that the hydrologic model sensitivity to temporally aggregating the forcing inputs varies across model output variables and model locations. We used Latin hypercube sampling to sample model parameters from eight combinations of three influential model physics choices (three model decisions with two options for each decision, i.e., eight model configurations). Results showed that the choice of model physics can change the relative influence of forcing on model outputs and the forcing importance may not be dependent on the parameter space. This allows for model output sensitivity to forcing aggregation to be tested prior to parameter calibration. More generally, this work provides a comprehensive analysis of the dependence of modeled outcomes on input forcing behavior, providing insight into the regional variability of forcing variable dominance on modeled outputs across CONUS.

     
    more » « less
  5. Abstract

    Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.

     
    more » « less